Solving symmetric indefinite systems in an interior-point method for linear programming

نویسندگان

  • Robert Fourer
  • Sanjay Mehrotra
چکیده

Received 28 January 1992 Revised manuscript received 27 October 1992 This paper is dedicated to Phil Wolfe on the occasion of his 65th birthday. We describe an implementation of a primal-dual path following method for linear programming that solves symmetric indefinite "augmented" systems directly by Bunch-Parlett factorization, rather than reducing these systems to the positive definite "normal equations" that are solved by Cholesky factoriz -~ ation in many existing implementations. The augmented system approach is seen to avoid difficulties of numerical instability and inefficiency associated with free variables and with dense columns in the normal equations approach. Solving the indefinite systems does incur an extra overhead, whose median is about 40% in our tests; but the augmented system approach proves to be faster for a minority of cases in which the normal equations have relatively dense Cholesky factors. A detailed analysis shows that the augmented system factorization is reliable over a fairly large range of the parameter settings that control the tradeoff between sparsity and numerical stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

An improved infeasible‎ ‎interior-point method for symmetric cone linear complementarity‎ ‎problem

We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...

متن کامل

Preconditioning Indefinite Systems in Interior-Point Methods for quadratic optimization

A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditione...

متن کامل

Symmetric Quasidefinite Matrices

We say that a symmetric matrix K is quasi-definite if it has the form K = [ −E AT A F ] where E and F are symmetric positive definite matrices. Although such matrices are indefinite, we show that any symmetric permutation of a quasi-definite matrix yields a factorization LDLT . We apply this result to obtain a new approach for solving the symmetric indefinite systems arising in interior-point m...

متن کامل

Preconditioning Indefinite Systems in Interior Point Methods for Large Scale Linear Optimization

We discuss the use of preconditioned conjugate gradients method for solving the reduced KKT systems arising in interior point algorithms for linear programming. The (indefinite) augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the (positive definite) normal equations form. Therefore we use the conjugate gradients method to solve th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 62  شماره 

صفحات  -

تاریخ انتشار 1993